Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors
Price for Eshop: 901 Kč (€ 36.0)
VAT 0% included
New
E-book delivered electronically online
E-Book information
Annotation
Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.
Ask question
You can ask us about this book and we'll send an answer to your e-mail.