Cover of Linda Reichl: Transition to Chaos

Linda Reichl Transition to Chaos

In Conservative Classical Systems: Quantum Manifestations

Price for Eshop: 2028 Kč (€ 81.1)

VAT 0% included

New

E-book delivered electronically online

E-Book information

Springer New York

2013

PDF
How do I buy e-book?

978-1-4757-4352-4

1-4757-4352-1

Annotation

resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys- tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte- there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].

Ask question

You can ask us about this book and we'll send an answer to your e-mail.