Algebraic $\overline {\mathbb {Q}}$-Groups as Abstract Groups
Price for Eshop: 2995 Kč (€ 119.8)
VAT 0% included
New
E-book delivered electronically online
E-Book information
Annotation
The author analyzes the abstract structure of algebraic groups over an algebraically closed field $K$. For $K$ of characteristic zero and $G$ a given connected affine algebraic $\overline{\mathbb Q}$-group, the main theorem describes all the affine algebraic $\overline{\mathbb Q} $-groups $H$ such that the groups $H(K)$ and $G(K)$ are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic $\overline{\mathbb Q} $-groups $G$ and $H$, the elementary equivalence of the pure groups $G(K)$ and $H(K)$ implies that they are abstractly isomorphic. In the final section, the author applies his results to characterize the connected algebraic groups, all of whose abstract automorphisms are standard, when $K$ is either $\overline {\mathbb Q}$ or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.
Ask question
You can ask us about this book and we'll send an answer to your e-mail.