Cover of Florin Diacu: Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem

Florin Diacu Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem

Price for Eshop: 2726 Kč (€ 109.0)

VAT 0% included

New

E-book delivered electronically online

E-Book information

American Mathematical Society

PDF
How do I buy e-book?

80

978-1-4704-1483-2

1-4704-1483-X

Annotation

The author considers the $3$-dimensional gravitational $n$-body problem, $n\ge 2$, in spaces of constant Gaussian curvature $\kappa\ne 0$, i.e. on spheres ${\mathbb S}_\kappa^3$, for $\kappa>0$, and on hyperbolic manifolds ${\mathbb H}_\kappa^3$, for $\kappa<0$. His goal is to define and study relative equilibria, which are orbits whose mutual distances remain constant in time. He also briefly discusses the issue of singularities in order to avoid impossible configurations. He derives the equations of motion and defines six classes of relative equilibria, which follow naturally from the geometric properties of ${\mathbb S}_\kappa^3$ and ${\mathbb H}_\kappa^3$. Then he proves several criteria, each expressing the conditions for the existence of a certain class of relative equilibria, some of which have a simple rotation, whereas others perform a double rotation, and he describes their qualitative behaviour.

Ask question

You can ask us about this book and we'll send an answer to your e-mail.